Answer:
Option A
Explanation:
$\frac{4}{3}\sin i=\frac{\sqrt{45}}{4}\sin(90-\theta_{c})=\frac{\sqrt{45}}{4}\cos \theta_{c}$
$\sin \theta_{c}=\frac{n_{2}}{n_{1}}$
$\therefore$ $\cos \theta_{c}=\sqrt{1-\left(\frac{n_{2}}{n_{1}}\right)^{2}}$
$\Rightarrow$ $\frac{4}{3} \sin i=\frac{\sqrt{45}}{4}\frac{3}{\sqrt{45}}$
$\sin i=\frac{9}{16}$
In second case,
$\sin \theta_{c}=\frac{n_{2}}{n_{1}}=\frac{7}{8}$
$\Rightarrow$ $\cos \theta_{c}=\frac{\sqrt{15}}{8}$
$\frac{16}{3\sqrt{15}}\sin i=\frac{5}{8}\sin (90-\theta)$
Simplifying we get, $\sin i=\frac{9}{16}$
(a) is correct.
Same approach can be adopted for other options. Correct answers are (a) and (c).